1 minute read

Propositions

Conditions

variable에 따라 True, False 가 달라지는 expression.

\[x^2 = 4\]
  • $x= \pm 2$ 이면 True.
  • otherwise: False

비교: true/false propositions

  • true proposition: 항상 true.
  • false proposition: 항상 false.

Truth Sets

어떤 condition을 만족하는 element들로 구성된 set.

condition이 정해지면, truth set이 지정됨.

condition을 통해 set이 정해짐.

Logical Operations

Unary Operations

  • $\neg$ : Logical Negation

Binary Operations

  • $\land$ : Logical Conjunction (= and)
  • $\lor$ : Logical Disjunction (= or)
  • $\implies$ : Logical Implication
  • $\oplus$ : Logical Exclusive Disjunction (= xor)

참고: Truth Table

Logical Implications

Truth Table of Logical Implication

cause $p$가 False 경우 무조건 True임.

무죄 추정의 원칙?

\[p \implies q\]
$p$ $q$  
False False True
False True True
True False False
True True True

Sufficiency and Necessity

참고: Sufficiency and Necessity

Converse, Contrapositive, Inverse

\[p \implies q\]
  • converse (역): $q\implies p$
  • inverse (부정): $\neg p \implies \neg q$
  • contrapositive (대우): $\neg q \implies \neg q$

All and Existent

For All $\forall$

$\forall x, p$: 모든 $x$ 에 대해 $p$가 만족함.

  • $\forall x, 0x = 0$
  • $\forall x \text{ except }x=0, x\frac{1}{x}=1$

There Exists $\exists$

$\exists x, q$: 최소한 하나 이상의 $x$에서 $q$가 만족함.

  • $\exists x, x+3 = 0$
  • $\exists x, x^2=1$

Identities and Inverses

Additive Identities and Inverse

\[\begin{aligned} \forall x, \exists a, x+a =x & \implies a=0 \\ \forall x, \exists a, x+a = 0 &\implies a=-x \end{aligned}\]

Multiplicative Identities and Inverse

\[\begin{aligned} \forall x \text{ except } x=0, \exists a, xa=x &\implies a=1 \\ \forall x \text{ except } x=0, \exists a, xa=1 &\implies a=x^{-1} \end{aligned}\]

Logical Computations

Commutativity

교환법칙

  • $p \land q \iff q \land p$
  • $p \lor q \iff q \land p$

Associativity

결합법칙

  • $(p \land q) \land r \iff p \land (q \land r)$
  • $(p \lor q) \lor r \iff p \lor (q \lor r)$

Distributivity

분배접칙

  • $p \land (q \lor r) \iff (p \land q) \lor (p \land r)$
  • $p \lor (q \land r) \iff (p \lor q) \land (p \lor r)$

  • $(p \implies q) \iff (\neg q \implies \neg p)$
  • $(p \oplus q) \iff [{p \land (\neg q)} \lor { (\neg p) \land q } ]$


같이보면 좋은 자료들

Categories:

Updated: